Discriminator Varieties of Boolean Algebras with Residuated Operators

نویسندگان

  • PETER JIPSEN
  • P. JIPSEN
چکیده

The theory of discriminator algebras and varieties has been investigated extensively, and provides us with a wealth of information and techniques applicable to specific examples of such algebras and varieties. Here we give several such examples for Boolean algebras with a residuated binary operator, abbreviated as r-algebras. More specifically, we show that all finite r-algebras, all integral ralgebras, all unital r-algebras with finitely many elements below the unit, and all commutative residuated monoids are discriminator algebras, provided they are subdirectly irreducible. These results are then used to give equational bases for some varieties of r-algebras. We also show that the variety of all residuated Boolean monoids is not a discriminator variety, which answers a question of B. Jónsson. 1. Preliminaries. A unary operation f on a Boolean algebra A0 = (A,+, 0, ·, 1,− ) is additive if f(x + y) = f(x) + f(y) and normal if f(0) = 0. For an n-ary operation f on A0, a sequence a ∈ A and i < n we define the (a, i)-translate of f to be the unary operation fa,i(x) = f(a0, . . . , ai−1, x, ai+1, . . . , an−1) . An operator on A0 is an n-ary operation for which all (a, i)-translates are additive and normal. Note that 0-ary operations (constants) have no translates, so they are operators by default. A = (A0,F) is a Boolean algebra with operators (BAO for short) if each f ∈ F is an operator on A0. The arity (or rank) of f is denoted by %f . To be an operator on a Boolean algebra is of course an equational property, and the variety of all BAOs with operators in F will be denoted by BAOF . The variety BAO{f}, where f is a unary operator, is usually referred to as the variety of modal algebras (the algebraic counterpart of modal logic). 1991 Mathematics Subject Classification: Primary 06E25; Secondary 03G15, 08A40, 03B45. The paper is in final form and no version of it will be published elsewhere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semisimplicity, EDPC and Discriminator Varieties of Residuated Lattices

We prove that all semisimple varieties of FLew-algebras are discriminator varieties. A characterisation of discriminator and EDPC varieties of FLew-algebras follows. It matches exactly a natural classification of logics over FLew proposed by H. Ono.

متن کامل

Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties

We consider the class of pointed varieties of algebras having a lattice term reduct and we show that each such variety gives rise in a natural way, and according to a regular pattern, to at least three interesting logics. Although the mentioned class includes several logically and algebraically signi…cant examples (e.g. Boolean algebras, MV algebras, Boolean algebras with operators, residuated ...

متن کامل

Semi-linear Varieties of Lattice-Ordered Algebras

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...

متن کامل

Regularity in residuated lattices

In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...

متن کامل

The connection of skew Boolean algebras and discriminator varieties to Church algebras

We establish a connection between skew Boolean algebras and Church algebras. We prove that the set of all semicentral elements in a right Church algebra forms a right-handed skew Boolean algebra for the properly defined operations. The main result of this paper states that the variety of all semicentral right Church algebras of type τ is term equivalent to the variety of right-handed skew Boole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014